
Hyperbolic Geometry of knots – Erik Visse
February 1st, 2016

These are the knotes from the seminar on knot theory in Leiden in the spring of
2016. The website for this seminar can be found at http://pub.math.leidenuniv.
nl/~lyczakjt/seminar/knots2016.html. Not all the material in these notes could
be treated during the talk due to time constraints. The superfluous material has
been kept in for the interested reader.

These notes take heavily after some lecture notes by Lackenby [Lac00].

The author thanks Roland van der Veen for his help with the material.

The knots that we will encounter today are the so-called hyperbolic knots. They
are those for which their complement (in S3) has a complete and finite volume
hyperbolic structure.

1 The punctured torus

As an introduction to today’s topic, let’s consider a lower dimensional analogue.
We embed a point into the torus S1 × S1 and call its complement T the punctured
torus. There is an obvious metric on T : by drawing the standard representing square
for S1 × S1 where the (unique) vertex is the embedded point, and giving this the
euclidian metric. The big disadvantage of this is that it is not complete: Cauchy
sequences converging to the vertex (in the non-punctured torus) have no limit point
in the punctured torus. Alternatively, one may say that geodesics can’t always be
extended indefinitely as depicted by the red dotted line in Figure 1.

Figure 1: The punctured torus with a non-extendable geodesic.

There is a better metric possible –which is complete– and that one will turn out to
be hyperbolic.

2 Hyperbolic manifolds

Definition 2.1. A Riemannian n-manifold is a smooth n-manifold M equipped
with a metric g which is a family of inner products gp on the tangent space TpM
which is subject to the requirement that if X and Y are vector fields on M then
p 7→ gp(X(p), Y (p)) is smooth.

For any Riemannian manifold, there exists a measure of ‘curvature’. Giving the
formal definition would take us too far from today’s main topic and is omitted. From
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the metric one can also define a volume form, giving each Riemannian manifold a
possibly infinite volume.

Definition 2.2. Hyperbolic n-space is the unique complete simply-connected Rie-
mannian n-manifold with constant curvature −1. It is denoted Hn.

There are several models of Hn that can be of use. We give two.

• Upper half space. Let Un denote the set

{x = (x1, . . . , xn) ∈ Rn|xn > 0}.

The metric is given by the formula

gx(u, v) =
〈u, v〉Eucl

x2n
.

Figure 2: The upper half plane (n = 2) model with some hyperplanes. The grey
area forms a fundamental domain for the action of the modular group, and is of
no importance for our goal today. (picure from en.wikipedia.org/wiki/Modular_

group)

• Poincaré disc model. Let Dn denote the set

{x = (x1, . . . , xn) ∈ Rn|x21 + · · ·+ x2n < 1}

and assign a metric by the formula

gx(u, v) =

(
2

1− (x21 + · · ·x2n)2

)2

〈u, v〉Eucl.

It is a fact that these two models are isometric and we can translate isometries from
one into isometries of others. Hence it makes sense to call both of them a model for
Hn. We will switch freely between the models, where these two have the advantage
that angles are Euclidian.

In the second model it makes sense to call the bounding set

Sn−1∞ := {(x1, . . . , xn) ∈ Rn|x21 + · · ·+ x2n = 1}

2

en.wikipedia.org/wiki/Modular_group
en.wikipedia.org/wiki/Modular_group


Figure 3: The Poincaré disc (n = 2) model with some hyperplanes. (picture from
http://jamesbowthorpe.com/post/93893567397)

the sphere at infinity. This set (and its corresponding sets in the other models) will
be useful in our study. In the upper half space model it corresponds to C ∪ {∞}.

The second model has a further advantage that it gives a sequence of canonical
inclusions D1 ⊂ D2 ⊂ . . . ⊂ Dn.

2.1 Isometries

There are two important classes of isometries of hyperbolic space:

(1) These are isometries of the disc model that are restrictions of linear orthogonal
maps Rn → Rn that fix the origin.

(2) These are isometries of the upper half space model that are restrictions of
maps Rn → Rn of the form x 7→ λAx+ b with λ ∈ R>0, A an orthogonal map
having en as eigenspace, and b ∈ Rn−1 × {0}.

Theorem 2.3. The group of isometries Isom(Hn) is generated by all isometries of
classes 1 and 2.

Proof. This is [Lac00] Corollary 2.2.

Corollary 2.4. Let h : Hn → Hn a (hyperbolic) isometry and let k be a positive
integer. Then h

• h extends to a homeomorphism Sn−1∞ → Sn−1∞ ,

• preserves the set of codimension-k hyperspaces,

• preserves the angles between Sn−1∞ and arcs intersecting Sn−1∞ .

Proof. One can directly check that these statements hold of isometries from classes
1 and 2.
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The extension map in 2.4 is always injective, but that is not a formal consequence
of the above theorem.

Definition 2.5. A k-dimensional hyperplane in Hn is the image of Dk ⊂ Dn after
an isometry. A half-space is the closure in Dn of one component of the complement
of a codimension one hyperplane.

In the disc model, hyperplanes are semi-spheres perpendicular to the boundary of
the disc and diagonal cross sections. In the upper half space model, hyperplanes are
semi-spheres or hyperplanes perpendicular to the boundary hyperplane xn = 0.

We now turn to the isometries of the hyperbolic spaces H3 and H2 which are most
useful for us.

Definition 2.6. Let Isom+(Hn) denote the subgroup of orientation preserving
isometries of Hn.

Definition 2.7. For a field k, define the group PSL2(k) = SL2(k)/{id,− id}.

Any element ±
(
a b
c d

)
∈ PSL2(C) corresponds uniquely to a Möbius map z 7→

az+b
cz+d , which is a homeomorphism of C ∪ {∞}.

Theorem 2.8. Isom+(H3) = PSL2(C)

Proof. This is [Lac00] Theorem 5.1.

The proof is essentially proving that the image of the set of Möbius maps and the
set of extensions of elements of Isom+(H3) in Homeo(S2

∞) coincide. For this, one
needs to study the fixed points of isometries.

Theorem 2.9. Isom+(H2) = PSL2(R)

Proof. This is [Lac00] Theorem 5.5. It is also well-known for people who know
about modular forms.

2.2 Mostov Rigidity

Just for ‘ordinary’ manifolds, we can define hyperbolic manifolds using charts to
hyperbolic space where gluing maps are supposed to be isometries.

Definition 2.10. We call a manifold closed if it is compact and has empty bound-
ary.

A lot of information of hyperbolic manifolds is contained in their fundamental group,
as made explicit in the following theorem.

Theorem 2.11 (Mostov Rigidity). Let M and N be either a complete and finite
volume or a closed hyperbolic n-manifolds, with n ≥ 3. If π1(M) and π1(N) are
isomorphic, then M and N are isomorphic hyperbolic manifolds.

Proof. See [Lac00], page 6.
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Remember that ‘complete and finite volume hyperbolic structure’ is precisely the
property we imposed on the knots of today’s interest.

2.3 The punctured torus again

We consider the following ideal polyhedron in the upper half plane:

Figure 4: The punctured torus as an ideal square. The metric here is complete:
sequences that were Cauchy in the euclidian metric which would converge to the
vertex are no longer Cauchy.

The gluing of the sides is done using

φ1 : E1 → E2,

z 7→ z + 1

z + 2
;

φ3 : E3 → E4,

z 7→ z − 1

−z + 2

and φ2 = φ−11 and φ4 = φ−13 .

3 The figure-8 knot

In this section, we will study the hyperbolic structure on the complement of the
figure-8 knot in S3. All of the pictures in this and section the next come from
[Lac00] chapter 7.

We’ll glue two tetrahedra together in the way depicted in Figure 6. In the quotient
space M we glue all the edge into two sets of three and the vertices are all glued to
a single point v.
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Figure 5: For those knot in the now: the figure-8 knot.

Figure 6: Gluing the two tetrahedra as depicted gives us the quotient space M with
all the vertices glued to a single point v.
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The topological space M is not a manifold since no small neighbourhood of v is
simply-connected. However, M \ v is a 3-manifold, and one that is of interest, as
shown in the following theorem.

Theorem 3.1. As topological spaces M \ v is homeomorphic to S3 \ L, where L is
the figure-8 knot.

Proof. We start out by making a simplex out of the knot and its complement. We
put four 0-cells on the knot and use four 1-cells to cover the knot as in Figure 7. We
add two more 1-cells (numbered 1 and 2) to aid us in the proof. We also give each
1-cell an orientation in order to more easily keep track of them.

Figure 7: The 0-cells and 1-cells of the simplex. Cells 3 to 6 form the knot, cells 1
and 2 are added for the proof.

Now we add four 2-cells (named A to D) as in Figure 8. Remember that we’re doing
all of this embedded in S3, so we can indeed have the 2-cells non-intersecting.

Figure 8: The 2-cells A to D are added. The dotted line for cell C is a guide to the
eye in order to make sense of the attachment to the 1-cells. Some areas of different
2-cells seem to overlap, but embedded in S3 we can make them non-intersecting (as
is expected of a cell decomposition).
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We’ve added the 1-cells 1 and 2 in order to deform this cell decomposition such that
its complement stays homeomorphic. For this we thicken the 1-cells 1 and 2 and
‘pull apart’ the knot through them. Afterwards we shrink the blown-up 1-cells back
into 1-cells. This process is visualized in Figure 9. Remark that during the process,
the space of made up by the 0-cells and 1-cells does not stay homeomorphic, but its
complement does and that is the space we care about. After this process, we arrive
at the cell decomposition in Figure 10. During the process the 2-cells have been
deformed homeomorphically and we can find them in the new picture. Cell A is the
middle one, cell B is still the outer one, C the left-hand one and D the right-hand
one.

Figure 9: This figure tries to make clear how the deformation process near cell 1
behaves.

It is clear that the decomposition of 0, 1, and 2-cells can be made in a plane. Thus
in order to make up for the complement in S3, we need to add two 3-cells and glue
them to the cell decomposition from Figure 10. Indeed, these both have four faces
and they are deformed tetrahedra. Let’s draw them in Figure 11 and add the labels
back in. Remark that when walking around the areas corresponding to the 2-cells,
we sometimes consecutively walk along cells 1 and 2 in two opposing directions.

Now we are ready to finish the proof. Notice that each line in Figure 11 contains
either the 1-cell 1 or the 1-cell 2. We retract each 1-cell numbered 3 to 6 (those
are precisely the ones that made up the figure-8 knot) to the neighbouring 0-cell.
Doing so, we arrive at two tetrahedra with the same gluing data as found in Figure
6. After having removed the vertices we arrive at the conclusion of the theorem.
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Figure 10: The cell decomposition of the knot after the homeomorphism pulling it
apart. The labels have been removed, but it is easy to see that cell A is the middle
2-cell, B the outer one, C the left-hand one and D the right-hand one. Had we kept
track of the orientation of the 1-cells in this figure, then the orientation of cells 1
and 2 (which are both still in their original place) would have been reversed in the
deformation process.

Figure 11: The two 3-cells with corresponding gluing data labelled.
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4 Gluing ideal tetrahedra

4.1 Ideal polyhedra

It is convenient to use nice pieces of hyperbolic space to glue together a hyperbolic
manifold. These will be ideal polyhedra.

Definition 4.1. A polyhedron in Hn is a compact subset that is the intersection of
a finite collection of half-spaces. An ideal polyhedron is the intersection of a finite
number of half-spaces, whose closure in Hn∩Sn−1∞ intersects Sn−1∞ in a finite number
of points, and which further has no vertices in Hn. An ideal tetrahedron is an ideal
polyhedron defined by 4 points on S2

∞.

Fact 4.2. In order to ensure that we can suitably glue together some ideal tetrahe-
dra, we need only check that all points on the gluing interface, the interior angles
sum to 2π.

In section 3, we have used tetrahedra with their vertices removed to glue together
the complement of the figure-8 knot. By doing so, we can give this complement a
hyperbolic structure, by interpreting these tetrahedra as ideal tetrahedra.

Fact 4.3. Ideal tetrahedra are determined by choosing their vertices in C∩{∞} to
be at the points 0, 1, ∞, and some z ∈ C \ R with Im(z) > 0. There is some choice
involved in picking z, which corresponds to the choice of which vertices to place at
0, 1 and ∞. A simple calculation shows that, given that we want to preserve the
orientation, the choice is between z, 1

1−z and 1− 1
z .

Lemma 4.4. The interior angles between any three faces of an ideal tetrahedron sum
to π.

Proof. We work in the upper half space U3 and assume the hyperplanes containing
these faces to be vertical Euclidian planes. (We may do so by placing their common
vertex at ∞ and applying an isometry.) Since in this model angles are Euclidian,
and the triangle defined by the three faces is now also Euclidian, the lemma follows.
See Figure 12 for a visualization.

Figure 12: Three faces of an ideal tetrahedron.
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Let M be a topological space obtained by having glued together a finite number of
ideal tetrahedra. Each of these tetrahedra have a hyperbolic structure, but at the
faces this structure a priori need not continue. The following theorem makes sense
of the fact pointed out above that the only thing that needs to be checked is that
the angles match up to 2π.

At each edge i, let wi1, . . . , w1k be the complex numbers defining the k tetrahedra
glued along edge i. We must make a coherent choice for these and we do so by
choosing wij from z, 1

1−z , 1− 1
z in such a way that the interior angle of the triangle

at the origin is the same as the interior angle at the edge i.

Theorem 4.5. Let M be as above with the condition that ∂M is a collection of
tori. Then M \ ∂M inherits a hyperbolic structure if and only if for each edge i the
formula

∏
j wij = 1 holds.

Proof. This is [Lac00] Theorem 8.4.

4.2 The figure-8 knot again

For the complement of the figure-8 knot we arrive at two equations, one for each of
the edges of the two tetrahedra.

1 = z2z1(1−
1

z2
)z1z2(1−

1

z1
)

and

1 =

(
1

1− z2

)(
1− 1

z1

)(
1

1− z2

)(
1

1− z1

)(
1− 1

z2

)(
1

1− z1

)
These two equations are in fact equivalent, and also equivalent to the equation

z1z2(1− z1)(1− z2) = 1. (1)

In section 3, we glued the tetrahedra together in such a way that they need to be
regular. Solving (1) with z1 = z2, we find z = ζ6, a choice of primitive sixth root of
unity.

The number field defined by adjoining ζ6 is Q(ζ6) and equals Q(
√
−3). This number

field will come up in the next section.

5 Hyperbolic structures

In today’s last section, we make a link between today’s and next week’s topic. Most
of this section is from [Lac00] chapters 9 and 10, and [Rat94] chapter 8.4.

Let M be a Riemannian manifold and M̃ be its universal cover. Then M̃ inherits a
metric, covering transformations are isometries, and if M is complete then so is M̃ .
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Lemma 5.1. Let M and N be hyperbolic manifolds with local isometries f1, f2 : M →
N . Suppose that M is connected and that f1 and f2 agree on some non-empty open
subset of M . Then f1 = f2.

Proof. Lackenby Lemma 10.2. The proof is basically proving that the set on which
f1 and f2 agree is closed as well as open and uses that isometries act rigidly, which
is the property that agreeing on a non-empty open subset implies being equal. The
technicalities are standard.

Let M be a hyperbolic manifold and let p : M̃ → M be its universal cover with
inherited structure of a hyperbolic manifold. Then each covering transformation
τ : M̃ → M̃ is an isometry. Pick a basepoint x0 ∈ M̃ and a connected chart
φ : U0 → Hn around it. Then φ can be extended to a local isometry D : M̃ → Hn

which is called the developing map.

We can give φ◦τ as a chart around τ−1(x0) and thereby define D in a neighbourhood
of τ−1(x0). Since gluing maps between charts are supposed to be isometries of Hn,
there exists an element gτ ∈ Isom(Hn) such that

D|τ−1(U0) = g−1τ ◦ φ ◦ τ

holds, making the following diagram commute

M̃

D
��

τ // M̃

D
��

Hn
gτ

// Hn

By Lemma 5.1, this diagram commutes on all of M and by pasting commutative
diagrams together, we see that gστ = gσgτ holds and hence we have a group homo-
morphism

η : Aut(p)→ Isom(Hn).

Remark 5.2. The developing map D and the holonomy map η are not unique. The
developing map is unique up to composition with an element of Isom(Hn) and the
holonomy map is unique up to conjugation of an element of Isom(Hn).

Fact 5.3. For orientable manifolds, the holonomy η has image in Isom+(Hn).

Remark 5.4. Remember that the group of covering transformations of a universal
cover of a space X is isomorphic to π1(X). Further remember that we have already
seen that Isom+(H3) = PSL2(C). We have therefore found a map η : π1(M) →
PSL2(C).

In the case where M is complete, η is injective and M = Hn/η(π1(M)) holds.

Remember that η was defined up to choice of x0 and U0. Therefore different choices
give different hyperbolic structures to M , and different maps into PSL2(C).

Theorem 5.5. Let M be a hyperbolic n-manifold. Then the set of hyperbolic struc-
tures on M is in bijective correspondence to the set of conjugacy classes of homo-
morphisms π1(M)→ PSL2(C).
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For every such (conjugacy class of such) morphism on the right, the traces of that
morphism generate a number field. By Mostov Rigidity 2.11, there is a canonical
choice for a hyperbolic structure on a hyperbolic manifold, and that is the unique
one that is complete. Therefore every hyperbolic knot has a canonical associated
number field.

Example 5.6. For the figure-8 knot, that number field is Q(
√
−3), corresponding

to equation (1) arising from gluing its complement from two ideal tetrahedra.
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