Mastermath Elliptic Curves, Homework sets 7 and 8

Problems marked with a star in the lists are to be handed in and count towards your grade according to the rules on the web page.

All non-optional problems and their solutions are part of the course and could play a role in the exam.

Homework for 3rd November 2015, 10:15: 43^* , 44, $45(a)^*$, $45(d)^*$, 46^* , 48 and 51(b)

Homework for 10th November 2015, 10:15: 45(b)*, 47, 49*, 50*, 53 Optional problems: 45(c), 51(a), 52

We use the notation $\ker(\phi) = \ker(\phi : E(\overline{k}) \to F(\overline{k})) \subset E(\overline{k})$ for $\phi : E \to F$ and $E[m] = \ker([m] : E \to E)$.

Problem 43. Let $\zeta \in \mathbf{F}_4$ denote a primitive 3rd root of unity. Let E be the elliptic curve over \mathbf{F}_4 defined by the equation $Y^2 + Y = X^3$. Let $f : E \to E$ be given by $f(x, y) = (\zeta x, y)$ and let $g : E \to E$ be given by $g(x, y) = (x + 1, y + x + \zeta)$. Show that f and g are automorphisms of E and show that they do not commute. Therefore the ring End E is not commutative in this case.

Problem 44. Let *E* be the elliptic curve over **Q** given by $Y^2 + Y = X^3$ and let *Q* denote the point (0,0). Let $\tau : E \longrightarrow E$ denote translation by *Q*. In other words $\tau(P) = P + Q$ for *P* a point on *E*.

- (a) Show that τ is a *curve automorphism* of *E* of order 3, but not an elliptic curve automorphism.
- (b) Give a formula for the point τP in terms of the coordinates x and y of P = (x, y). Also give a formula for $\tau^2 P$.
- (c) Let *H* be the subgroup generated by *Q* and let *E'* denote the elliptic curve over **Q** given by $Y^2 + 3Y = X^3 9$. Show that $\phi(x, y) = (x + \frac{1}{x^2}, y 1 \frac{2y+1}{x^3})$ defines an isogeny $\phi: E \longrightarrow E'$ whose kernel is *H*. You may use a computer for part (c).

Problem 45. Let k be a field of characteristic different from 2. Suppose that k contains i, a square root of -1. Let E be the elliptic curve over k given by $Y^2 = X^3 - X$.

- (a) Show that the map [i](x, y) = (-x, iy) defines an endomorphism $[i] : E \longrightarrow E$ and that [i] satisfies $[i]^2 + [1] = 0$ in End(E).
- (b) For $a, b \in \mathbb{Z}$, show that the degree of the endomorphism a + b[i] of E is equal to $a^2 + b^2$.

- (c) Compute formulas for the isogeny $\phi = [1] + [i]$.
- (d) Compute the points in ker(ϕ) for $\phi = [1] + [i]$. Note: this can easily be done without doing (c). If you do use (c), then hand in a solution to (c).

Problem 46. Let *E* be the elliptic curve over **Q** given by the equation $Y^2 + Y = X^3$. Compute the coordinates of its 2-torsion points and of its 3-torsion points in $E(\overline{\mathbf{Q}})$. [Hint for the 3-torsion: the curve is not of the form of Problem 12, so the formula in 12(a) is different, but the idea behind 12(c) still works.]

Problem 47. Let *E* be the elliptic curve over \mathbf{F}_2 given by $Y^2 + Y = X^3$. Compute the dual of its Frobenius endomorphism.

Problem 48 (Exercise 3.30 of [Silverman] 2nd Edition). Let A be an abelian group and $r \ge 0$ and $N \ge 1$ integers. Suppose that $\#A[d] = d^r$ for all $d \mid N$, where A[d] denotes the subgroup of elements of order dividing d. Show $A[N] \cong (\mathbf{Z}/N\mathbf{Z})^r$.

Problem 49 (Inspired by Exercise 3.32 of [Silverman] 2nd Edition). Let $\phi \in$ End(*E*) be an endomorphism and let

$$d = \deg(\phi)$$
, and $t = 1 + \deg(\phi) - \deg(1 - \phi) \in \mathbf{Z}$.

- (a) Prove $t = \phi + \hat{\phi}$ and $\phi^2 t\phi + d = 0$ in End(*E*).
- (b) Give a formula for $\deg(m\phi n)$ in terms of m, n, d, t.
- (c) Prove $|t| \leq 2\sqrt{d}$. [Hint: use deg $(m\phi n) \geq 0$ for all $m, n \in \mathbb{Z}$.]
- (d) Prove *Hasse's theorem*, which states that for E/\mathbf{F}_q an elliptic curve, we have

$$|\#E(\mathbf{F}_q) - (q+1)| \le 2\sqrt{q}.$$

[Hint: show that $E(\mathbf{F}_q) = \ker(1 - \operatorname{Frob}_q)$.]

Problem 50. Let k be a field and let E be an elliptic curve over k.

- (a) Show that for m ≥ 3 not divisible by char k, the natural map Aut E → Aut(E[m]) is injective, while for m = 2 its kernel is {±id}.
 Notes: this is [Silverman, Exercise 3.12], and you are not allowed to use [Silverman, Theorem III.10.1]. Hint for one approach to this problem: use Problem 49(c).
- (b) Show that the order of Aut E is at most 12 when char $k \neq 2$, while it is at most 48 when char k = 2. (It is actually ≤ 24 .)

(c) Show that the order of an automorphism of E is 1, 2, 3, 4 or 6. Hint: use Problems 49(a) and 49(b).

Problem 51. Recall from the previous lecture the proof that every elliptic curve (i.e., smooth projective curve of genus 1 with a point) is isomorphic to a smooth projective plane Weierstrass curve with the point at infinity.

- (a) Fill in the details.
- (b) Prove that every isomorphism of Weierstrass elliptic curves over k is of the form $(x : y : 1) \mapsto (u^2x + r : u^3y + u^2sx + t : 1)$ with $r, s, t \in k$ and $u \in k^*$. [Hint: it is of the form $(x : y : 1) \mapsto (X : Y : 1)$. Show $X \in L(2O)$ and $Y \in L(3O)$.]

Problem 52. Learn about the Weil pairing and use this to prove $\widehat{\phi + \psi} = \widehat{\phi} + \widehat{\psi}$. For sub-problems to help you towards this goal, see Exercise 3.31 of [Silverman, 2nd Edition].

Problem 53. Let *E* be an elliptic curve over a finite field \mathbf{F}_q of *q* elements. Show that we have $E(\mathbf{F}_q) \cong (\mathbf{Z}/m_1\mathbf{Z}) \times (\mathbf{Z}/m_2\mathbf{Z})$, where

- (a) m_1 and m_2 are integers with $m_1 \mid m_2$,
- (b) m_1 is the largest integer such that $\operatorname{Frob}_q 1$ is a multiple of $[m_1]$ in the ring $\operatorname{End}(E)$.

Note that the number $m_1m_2 = \#E(\mathbf{F}_q)$ is as in Problem 49.

Source of most of the problems: adapted from Mastermath Elliptic Curves 2013, René Schoof and Peter Stevenhagen.