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Spectral sequences

A useful tool in homological algebra is the theory of spectral sequences. The purpose of this text
is to introduce the reader to the subject and proofs are generally omitted for clearity. At the end
the reader will be hopefully be able to work with spectral sequences as they arise in practice.
For a thorough treatise on spectral sequences one can consult at any of the many books on
homological algebra. Below the book by [Weibel] is used as a reference for theorems without
proofs.

1 Homological spectral sequences

Definition 1. A homological spectral sequence (or simply spectral sequences) in an abelian cate-
gory (for example modules over a fixed commutative ring) consists of

• a non-negative integer a;

• objects Er
pq for every r ≥ a indexed by integers p and q. We assume that Er

pq = 0 for
negative p or q;

• morphisms dr : Er
pq → Er

p−r,q+r−1 for all r ≥ a and all p and q, such that dr ◦ dr = 0;

• isomorphisms between Er+1
pq and the homology at Er

pq under the complex given by the
morphisms dr.

One can think of Er as a family of complexes whose homology groups are the objects of Er+1:

• • • • •

• • • • •

E0 : • • • • •

• • • • •

• • • • •

0 0 0 0 0

0 • • • • •

0 • • • • •

E1 : 0 • • • • •

0 • • • • •

0 • • • • •

0 0 • • • • •

0 0 • • • • •

E2 : 0 0 • • • • •

0 0 • • • • •

• • • • •

0 0 0
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1 Homological spectral sequences

Note that the objects Er+1 can be recovered from the rth page, but the differentials dr+1

cannot and are part of the given structure.

Let us now fix p and q for a moment and look at the objects at position (p, q) for increasing
r. First note that each Er+1

pq is a subquotient of Er
pq. One also sees that if r > max(p, q + 1),

then Er
pq lives in the complex 0 Er

pq 0.dr dr

So we find Er
pq
∼= Er+1

pq
∼= Er+2

pq
∼= . . .. Hence, for large enough r the objects on position (p, q)

stabilize. We will write E∞pq for this object.

The usefulness of spectral sequences lies in convergence, which we will now define.

Definition 2. Let Hn be an object for every integer n ≥ 0. We say that a homological spectral
sequence Ea

pq converges to Hp+q, notation

Ea
pq ⇒ Hp+q,

if each Hn has a filtration

0 = (Hn)−1 ⊆ (Hn)0 ⊆ (Hn)1 ⊆ . . . ⊆ (Hn)n−1 ⊆ (Hn)n = Hn,

and we have isomorphisms
E∞pq
∼= (Hp+q)p/(Hp+q)p−1.

This means that the filtration on Hn allows one to determine the objects of E∞ with p+q = n.

n (Hn)0/(Hn)−1 ∼= (Hn)0

n− 1 (Hn)1/(Hn)0

n− 2 (Hn)2/(Hn)1

E∞ :
...

. . .

1 (Hn)n−1/(Hn)n−2

q = 0 (Hn)n/(Hn)n−1 ∼= Hn/(Hn)n−1

p = 0 1 2 . . . n− 1 n

Convergence of spectral sequences is particular useful when there are a lot of trivial objects
on E∞. Let us first consider the following extreme case.

Theorem 1. Fix an integer n and suppose that we have a converging homological spectral sequence

Er
pq ⇒ Hp+q.

Then E∞pq = 0 on the diagonal p + q = n if and only if Hn = 0.

By far the most applications of spectral sequences occur in a slightly less specific situation
named in the following definition.

Definition 3. A spectral sequence is said to collapse at Es (s ≥ a) if Es consists of only trivial
objects outside of a single row or column. In this case we have Es ∼= E∞ (at least for s ≥ 2).

For a converging spectral sequence which collapses we have the following relation between the
∞-page and the limit.
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2 Construction of homological spectral sequences

Theorem 2. Suppose that a converging spectral sequence

Er
pq ⇒ Hp+q

collapses at Es (s ≥ 2). Then Hn is isomorphic to the unique non-zero Es
pq with p + q = n.

In other situations there is still something to say, but we do not get isomorphisms between Hn

and objects of the spectral sequence any more. We will just be able to say something on Hn up
to extension, in the sense made clear by the following exercises.

Exercise 1 ([Weibel], Ex 5.2.1 (Corrected)). Suppose that a spectral sequence sequence converg-
ing to H∗ has E2

pq = 0 unless p = 0, 1. Show that there are exact sequences

0 E2
0n Hn E2

1,n−1 0.

Generalize to two non-zero columns at p = k, l ≥ 0.

Exercise 2 ([Weibel], Ex 5.2.2). Suppose that a spectral sequence sequence converging to H∗ has
E2
pq = 0 unless q = 0, 1. Show that there is a long exact sequence

. . . Hp+1 E2
p+1,0 E2

p−1,1 Hp E2
p0 E2

p−2,1 Hp−1 . . . .d2 d

Generalize to two non-zero rows at q = k, l ≥ 0.

Exercise 3 (Five term sequence). Consider a converging spectral sequence

E2
pq ⇒ Hp+q.

Then we have an exact sequence of a the first terms of low degree

H2 E2
20 E2

01 H1 E2
10 0.d2

Exercise 4 (Edge morphisms). Show that for a spectral sequences and all r larger than 2 (and a),
we have natural maps

Er
0n � E∞0n and E∞n0 ⊆ Er

n0.

If the spectral sequence converges to Hn we get maps

Er
0n � E∞0n ⊆ Hn and Hn � E∞n0 ⊆ Er

n0.

These maps are called the edge morphisms.

2 Construction of homological spectral sequences

We have seen some terminology and theory concering spectral sequences. Now we will give a few
ways to produce spectral sequences. The first one being the most general.

2.1 Spectral sequence of a filtered complex

Let C• be a complex concentrated in non-negative degrees and let (C)n be a filtration of the
complex which is canonically bounded, i.e. 0 = (Cn)−1 ⊆ (Cn)0 ⊆ . . . ⊆ (Cn)n−1 = (Cn)n = Cn
for all n. We can depict this as
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2 Construction of homological spectral sequences

C : . . . C3 C2 C1 C0 0

...
...

...
...

...
...

(C)2 : . . . (C3)2 (C2)2 C1 C0 0

(C)1 : . . . (C3)1 (C2)1 (C1)1 C0 0

(C)0 : . . . (C3)0 (C2)0 (C1)0 (C0)0 0

(C)−1 : . . . 0 0 0 0 0

d3 d2 d1

in which all the horizontal maps are restriction of the differenatials in the original complex. So all
rows are complexes too.

In each column beneath Cn we have exactly n + 1 interesting quotients (Cn)p/(Cn)p−1. Let
us put these on the diagonal in a grid as we did for the filtration of the family H• above.

4 (C4)0

3 (C3)0 (C4)1/(C4)0

E0 : 2 (C2)0 (C3)1/(C3)0 (C4)2/(C4)1

1 (C1)0 (C2)1/(C2)0 (C3)2/(C3)1 (C4)3/(C4)2

q = 0 C0 C1/(C1)0 C2/(C2)1 C3/(C3)2 C4/(C4)3

p = 0 1 2 3 4

Here the horizontal maps for a fixed p come from the complex (C)p. We can extend this
zeroth page into a spectral sequence. The construction, like the construction of the connecting
homomorphisms or the snake map, is by direct definition and not very enlightening. We will just
state the existence of the differentials on subsequent pages and its convergence properties.

Theorem 3. Let (C)k be a canonically bounded filtration on a complex C•. There exists a natural
spectral sequence starting with E0

pq = (Cp+q)p/(Cp+q)p−1 such that it converges to the homology
of C•:

E0
pq ⇒ Hp+q(C).

Exercise 5. Verify the above theorem for the filtration (C)n = C• for all n ≥ 0.
Do the same for the filtration

(Ck)l =

{
0 for l < k;

Ck for l ≥ k.
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2 Construction of homological spectral sequences

Now change (C1)0 into C1. What happens?

Exercise 6. Consider the complex

. . . Z/4Z Z/4Z Z/4Z 0·2 ·2 ·2

of abelian groups. Define the filtration

. . . R2 R1 R0 0

...
...

...
...

. . . R22 R12 R02 0

. . . 2R2 R11 R01 0

. . . 0 2R1 R00 0

. . . 0 0 0

·2 ·2

·2 ·2

·2 ·2

·2

where each Rn and Rpq is a copy of Z/4Z.
The indices are simply to keep track of our objects. Every object Er

pq is a subquotient of objects
in the filtration. So make sure every object you compute below is written as either Rpq, 2Rp,
Rpq/2Rp or 0.

a) Determine E0 and note that the differentials come directly from the diagram above. Com-
pute E1 while keeping track of your indices.

b) Keeping your indices in mind, remark that there is only one obvious choice for the morphisms d1.
Use this to compute E2.

c) Determine the morphisms d2 (again, there is only one natural choice). Now compute E3 and
show that this is actually E∞. Conclude that you just defined a spectral sequence which
converges to the homology of the complex above.

If you did the above exercise, then you probably tried to compute the differential d2 : E2
20 →

E2
01. For this you just had to notice that the image of the morphism R22 → R12 even lies in

2R1 ↪→ R12. This is exactly what happens in the construction of this spectral sequence for general
filtered complexes, which uses the intermediate objects

Arp,n−p := {x ∈ (Cn)p | dn(x) lies in (Cn−1)p−r ⊆ (Cn−1)p} .

Since (Cn)p is part of Cn and (Cn−1)p−r is smaller than (Cn−1)p, we can think of (Cn)p becoming
closer to Cn for large p and (Cn−1)p−r going to 0. So we sometimes say the elements of Arp,n−p
approximate the cycles in Cn and one can define Er

pq as a quotient of these Arpq. For example the
definition

Er
pq :=

Arpq

dp+q+1(Ar−1p+r−1,q−r+2) + Ar−1p−1,q+1

works for all r ≥ 1. The morphisms dr are now simply restrictions of the maps dn in the orginal
complex.
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2 Construction of homological spectral sequences

(Cn+1)p+(r−1) Ar−1p+r−1,q−r+2 (Cn)p+(r−1)

...
...

(Cn+1)p (Cn)p Arp,q (Cn−1)p

(Cn)p−1 Ar−1p−1,q+1

...

...

(Cn−1)p−r Arp−r,q+r−1

⊇

dn+1

⊇

dn

⊇

dn

⊇

Exercise 7. Use the above diagram to conclude that we have maps dr : Er
pq → Er

p−r,q+r−1 and
that these maps form complexes.

The proof that the homology on the rth page yields the objects of the (r + 1)th page is rather
tedious, but straight forward. An efficient proof can be found in section 5.4 in [Weibel]. In
section 5.5 of this book one can also find a proof that such a spectral sequence associated to a
complex with a grading, converges to the homology of the complex.

2.2 Spectral sequences of a double complex

Many interesting spectral sequences are special examples of the sequences defined in the previous
chapter. For example, using this we can define two spectral sequence associated to a double
complex. First we will need the following definition.

Definition 4 (Total complex). Let Cpq be a first quadrant total complex, i.e. Cpq = 0 if p < 0 or
q < 0. We define the total complex by

(TotC)n =
⊕
p+q=n

Cpq.

The morphism dn : (TotC)n → (TotC)n−1 maps an element (cpq)p+q=n ∈ (TotC)n to the element
(dh(cp,q) + dv(cp+1,q−1))p+q=n ∈ (TotC)n−1.

Basically, each element in Cp,q ⊆ (TotC)p+q gets send using both the horizonal and the veritcal
maps of C•,• to both possible summands in (TotC)p+q−1.

We have a natural filtration on a double complex given by the horizontal truncations:

C03 0 0 0

trhor(C)≤0 = C02 0 0 0

C01 0 0 0

C00 0 0 0

C03 C13 0 0

trhor(C)≤1 = C02 C12 0 0

C01 C11 0 0

C00 C10 0 0
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2 Construction of homological spectral sequences

C03 C13 C23 0

trhor(C)≤2 = C02 C12 C22 0

C01 C11 C21 0

C00 C10 C20 0

The total complexes of these truncations of C•,• give a canonically bounded filtration on the
total complex of C•,•:

C0n ⊆ C0n ⊕ C1,n−1 ⊆ . . . ⊆ C0n ⊕ C1,n−1 ⊕ . . .⊕ Cn−1,1 ⊕ Cn,0 = (TotC)n.

We have the following result about the spectral sequence coming from this filtration on the total
complex:

Theorem 4. There exists a spectral sequence Ea
pq for a ≥ 0 with

• the zeroth page equal to the original double complex: E0
pq = Cpq;

• the morphisms on the zeroth page d0 are the vertical maps dv in C•,•;

• the morphisms d1 on the first page are naturally induced by the horizontal morphisms dh of
the original double complex.

This explains the suggestive notation

E2
pq = Hhor

p (Hver
q (C))

and we have the convergence

Hhor
p (Hver

q (C))⇒ Hp+q(TotC).

We could easily have used the vertical truncations of the double complex. This gives a differrent
spectral sequence with the same limit.

Theorem 5. For every double complex C•,• we have a spectral sequence satisfying

E2
pq = Hver

p (Hhor
q (C))⇒ Hp+q(TotC).

Note that the we still first compute the homology at the qth position and then at the pth
position. This makes E2

pq actually into a subquotient of C2
qp.

Using both these spectral sequences at the same time can give a lot of information.

Example 1 (Snake lemma). Consider the map of short exact sequences

0 A B C 0

0 A′ B′ C ′ 0

f g h

There is a natural exact sequence

0 ker f ker g kerh coker f coker g cokerh 0.δ
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2 Construction of homological spectral sequences

We will prove this important lemma using the machinery of spectral sequences.

Consider the first quadrant double complex, whose lower left corner is given by

C B A 0

C ′ B′ C ′ 0

h g f

All objects and maps which are not shown are assumed to be zero. If we apply theorem 5 to this
double complex, we see that above we have the following zeroth and first page of the spectral
sequence converging to Hn(TotC):

E0 :

0 0

A′ A

B′ B

C ′ C

and E1 :

0 0

0 0

0 0

0 0

So we conclude that in fact H•(TotC) = 0.
Now let use compute the first pages of the spectral sequence described in theorem 4. The zeroth
page is simply the original double complex (just forget the horizontal maps). For the first page
we find

E1 :

kerh ker g ker f 0

cokerh coker g coker f 0

These sequence are not necessarily exact, but we know that their homology groups are given by
E2. The second page looks like

E2 :

0

∗ * * 0

* * ∗ 0 0

However, we see that the boxed objects on E2 do not on subsequent pages. So the boxed objects
must be zero, since the limit is zero. So the two sequences on the first page are exact (except
possibly at kerh and coker f):

0 cokerh coker g coker f and kerh ker g ker f 0.

The kernel of the far right map in the first sequence and the cokernel of the far left map in the
second sequence are exactly the two remaining non-zero objects E2

20 → E2
01 on E2. We will prove

that the map between them is in fact an isomorphism. The kernel and cokernel are respectively
E3

20 and E3
01 which are exactly E∞20 and E∞01 , which must be zero since the limit of the spectral

sequence is zero.
So we can splice the two exact sequence together to get a longer exact sequence

0 cokerh coker g coker f kerh ker g ker f 0.
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2 Construction of homological spectral sequences

This shows that the construction of the higher morphisms in the spectral sequences is related
to the connection homomorphisms, as the connecting homomorphism in the snake lemma is simply
a morphism d2 on E2 of the spectral sequence described in theorem 4.

The same trick can be applied to the following classical results in homological algebra.

Exercise 8 (Acyclic assembly lemma). Let C•,• be a double complex in the first quadrant. If all
either all rows or all columns are exact, then so is the complex Tot(C).

Exercise 9 (The long exact sequence of homology). Let

0 C• D• E• 0

be an exact sequence of complexes. Prove that we have the following exact sequence

. . . Hn(C) Hn(D) Hn(E) Hn−1(C) Hn−1(D) Hn−1(E) . . .

Exercise 10 (The five lemma). Consider the map of exact rows

A B C D E

A′ B′ C ′ D′ E′

f g h i j

a) Prove that if f , g, i and j are isomorphisms, so is h.

b) Use your proof to show how to relax the conditions on f , g, i and j, without changing the
conclusion.

Exercise 11 (Tor•(A,B) = Tor•(B,A)). Let R be a commutative ring and consider elements A
and B in the abelian category of R-modules, where R is a commutative ring. Choose projective
resolutions P• → A and Q• → B. Consider the double complex (P ⊗ Q)pq = Pp ⊗ Qq to prove
that

Tor•(A,B) = Tor•(B,A).

2.3 Grothendieck spectral sequence

There is a rather general constructing of spectral sequences relating the higher derived functors of
a composition of functors to the higher derived functors of the respective functors. We will omit
the proof, which can be found in [Weibel].

Theorem 6 (Grothendieck spectral sequence). Let A, B and C be abelian categories, such that A
and B have enough projectives. Let F : A → B and G : B → C be two right exact additive functors,
such that F maps projective objects in A to a G-acyclic object in B. Then for any object A ∈ A
there exists a spectral sequence

E2
pq = LpG ◦ LqF (A)

converging to
Lp+q(G ◦ F )(A).

Note that it makes sense to talk about the higher derived functors of G ◦F as it is right exact,
since F and G both are.

This spectral sequence is extremely useful if it collapses at one of the early pages, but we
always have the exact sequence of remt of low degree:

L2(G ◦ F )A (L2G)(FA) G(L1F (A)) L1(G ◦ F )A (L1G)(FA) 0.

Exercise 12. Let A, B and C be abelian categories, such that A and B have enough projectives.
Let F : A → B and G : B → C be two additive functors. Assume F is right exact and G is exact.
Prove that for all q ≥ 0 one has

Lq(G ◦ F ) = G ◦ LqF.
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3 Cohomological spectral sequences

3 Cohomological spectral sequences

We will now look at the dual notion of homological spectral sequences. These are aptly named
cohomological spectral sequences. Using all we did above we can define a cohomological spectral
sequence in an abelian category C as an homological spectral sequence in the oppposite cate-
gory Cop. If we consider the objects in C we get homological spectral sequences with all the
arrows inverted. Let us, for completeness, state a definition like the one for homological spectral
sequences.

Definition 5. A cohomological spectral sequence in an abelian category (for example modules
over a fixed ring) consists of

• a non-negative integer a;

• objects Epq
r for every r ≥ a indexed by integers p and q. We assume that Epq

r = 0 for
negative p or q;

• morphisms dr : Epq
r → Ep+r,q−r+1

r for all r ≥ a and all p and q, such that dr ◦ dr = 0;

• isomorphisms between Epq
r+1 and the cohomology at Epq

r under the complex given by the
morphisms dr.

In case, no confusion can arise the term spectral sequence can refer to either a homological or a
cohomological spectral sequence. In practice it will always be clear by the way the objects are
indexed.

One can think of Er as a family of cocomplexes whose cohomology groups are the objects
of Er+1:

• • • • •

• • • • •

E0 : • • • • •

• • • • •

• • • • •

0 0 0 0 0

0 • • • • •

0 • • • • •

E1 : 0 • • • • •

0 • • • • •

0 • • • • •

0 0 • • • • •

0 0 • • • • •

E2 : 0 0 • • • • •

0 0 • • • • •

• • • • •

0 0 0
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3 Cohomological spectral sequences

The difference in direction between the morphisms in a homological and cohomological spectral
sequence are depicted in the following diagram:

∗
d0

d1

d2

d3

and
∗

d0
d1

d2

d3

Let us now turn to the notion of convergence for cohomological spectral sequences.

Definition 6. Let Hn be a family of objects indexed by integers n ≥ 0. We say that a cohomo-
logical spectral sequence Epq

a converges to Hp+q, notation

Epq
a ⇒ Hp+q,

if each Hn has a filtration

0 = (Hn)n+1 ⊆ (Hn)n ⊆ (Hn)n−1 ⊆ . . . ⊆ (Hn)1 ⊆ (Hn)0 = Hn,

and we have isomorphisms
Epq
∞
∼= (Hp+q)p/(Hp+q)p+1.

Again we can read off these quotient on the E∞ page.

n (Hn)0/(Hn)1 ∼= Hn/(Hn)1

n− 1 (Hn)1/(Hn)2

n− 2 (Hn)2/(Hn)3

E∞ :
...

. . .

1 (Hn)n−1/(Hn)n

q = 0 (Hn)n/(Hn)n+1 ∼= (Hn)n

p = 0 1 2 . . . n− 1 n

Exercise 13. Assume we have a converging cohomological spectral sequence Epq
2 ⇒ Hp+q. Make

sense of the following concepts, we already saw for the homological spectral sequences.

a) Hn = 0 if and only Epq
∞ = 0 for all p + q = n.

b) A single non-zero row or column at any page Er allows one to read of the limit Hn as the
unique non-zero object Epq

r where p + q = n.

c) Two non-zero columns or two non-zero rows in Er give a long exact sequence.

d) We have natural maps (also called edge maps):

En0
r � En0

∞ ⊆ Hn and Hn � E0n
∞ ⊆ E0n

r .

e) There exists an exact sequence of terms of low degree:

0 E10
2 H1 E01

2 E20
2 H2.
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4 Construction of cohomological spectral sequences

4 Construction of cohomological spectral sequences

There are a few natural and important constructions of cohomological spectral sequences, similar
to the case of homological spectral sequences. Some of the diagrams shown in the homological case
are omitted here for brevity. The reader, however, is advised to produce them for the cohomological
case as well.

4.1 Spectral sequences for filtrated cocomplexes and double cocomplexes

Consider a cocomplex C• (concentrated in non-negative degree). A filtration . . . ⊆ (C)2 ⊆ (C)1 ⊆
(C)0 = C• is said to be canonically bounded if the filtration of every object Cn in the complex is
of the form 0 = (Cn)n+1 ⊆ (Cn)n ⊆ . . . ⊆ (Cn)2 ⊆ (Cn)1 ⊆ (Cn)0 = Cn.

Theorem 7. Let C• be a canonically bounded cocomplex. Then there exists a converging spectral
sequence

Epq
0 = (Cp+q)p/(Cp+q)p+1 ⇒ Hp+q(C).

Note that the total complex of a double cocomplex C•,• (as always concentrated in non-negative
degrees) is a cocomplex (again concentrated in non-negative degrees.) Again, this gives us two
ways to produce two spectral sequences with the same limit using the previous theorem.

Theorem 8. Let C•,• be a double cocomplex. Then there exist two cohomological spectral sequences

Epq
2 = Hp

hor(H
q
ver(C)) and Epq

2 = Hp
ver(H

q
hor(C))

both converging to Hp+q(TotC).

Again, note that for the first spectral sequence Epq
2 is a quotient of a subobject of Cpq, while

in the second it is a subquotient of Cqp.

Exercise 14. Redo either the example or one of the exercises in the previous section using
cohomological spectral sequences and the result of the previous exercise.

Exercise 15. Let C•,• be a double complex which is zero outside 0 ≤ p ≤ k and 0 ≤ q ≤ l.
Then Dpq = Ck−p,l−q is a cocomplex which is zero outside of the same bounds. Prove that the
two homological spectral sequences associated to the double complex and the two cohomological
spectral sequences related to the cocomplex have the same limit and the same second page under
a reindexing of the objects.
In fact, the entire homological and cohomological sequence are related to each other in this way.

4.2 Grothendieck spectral sequence for right derived functors

Let us look at the dual statement to theorem 6.

Theorem 9. Let A, B and C be abelian categories, such that A and B have enough injectives. Let
F : A → B and G : B → C be two left exact additive functors, such that F maps injective objects
in A to a G-acyclic object in B. Then for any object A ∈ A there exists a cohomological spectral
sequence starting with

Epq
2 = RpG ◦RqF (A)

converging to
Rp+q(G ◦ F )(A).

We have the following exact sequence of low degree terms

0 (R1G)(FA) R1(G ◦ F )A G(R1F (A)) (R2F )(GA) R2(G ◦ F )A.
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5 Examples of spectral sequences

5 Examples of spectral sequences

We have seen some natural ways to construct spectral sequences. Each being a special case of the
previous construction. We can now use the Grothendieck spectral sequences to construct some
spectral sequences which are useful in algebra, topology and geometry.

Theorem 10 (Base change for Tor). Let f : S → R be a map of commutative rings. Then for
every R-module A and S-module B we have a spectral sequence

TorSp (TorRq (A,S), B)⇒ TorRp+q(A,B).

Similarly, we have a spectral sequence for the Ext functors.

Theorem 11 (Base change for Ext). Let f : S → R be a map of commutative rings. Then for
every S-module A and R-module B we have a spectral sequence

ExtpS(A,ExtqR(A,B))⇒ Extp+qR (A,B).

For general sheafs one has interesting and useful spectral sequence related to sheafs.

Theorem 12 (Leray spectral sequences). Let f : X → Y be a continuous map of topological
spaces. Then for any sheaf F of abelian groups on X we have a spectral sequence

Hp(Y,Rqf∗F)⇒ Hp+q(X,F).

Confusingly, there is another spectral sequence also named after Leray.

Theorem 13 (Leray spectral sequences). Let X Y Z
f g

be continuous maps of topo-
logical spaces. Then for any sheaf F of abelian groups on X we have a spectral sequence

Rpg∗(R
qf∗F)⇒ Rp+q(g ◦ f)∗F .

In geometry, one can often relate the global functors to the local functors using spectral se-
quences. We have for example for the Ext functors the following result.

Theorem 14 (Local to global Ext spectral sequences). Let F and G be sheaves of modules over
a ringed space (X,OX). Then we have a spectral sequence

Hp(X, ExtqOX
(F ,G))⇒ Extp+qOX

(F ,G).

Exercise 16. In each of the previous examples, find the two functors which make them into
Grothendieck spectral sequences. Also, determine for each example whether is concerns a homo-
logical or a cohomological spectral sequence.
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